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ABSTRACT

Agriculture of the future, which will be challenged by rising global food demand,
a scarcity of arable lands and resources, as well as numerous environmental
challenges, will need to be handled wisely using sustainable and eco-efficient
methods. Cereals are the most essential crops for human nourishment, and they
have a wide range of bacteria linked with them. The use of beneficial, plant-
associated microbes to improve crop production in agriculture is a long-term
strategy. Bacterial endophytes are endosymbiotic bacteria that live in plants,
modulate phytohormone signaling, metabolic activity, and plant defense response
pathways in their host plant. The application of agricultural techniques that
preserve the natural variety of plant endophytic bacteria has emerged as a critical
component of sustainable agriculture, ensuring plant production and agricultural
quality, and plant response to abiotic and biotic stressors. Hence, using endophytic
bacteria to increase cereal crop’s performance under stressful circumstances such
as cold, drought, salt, and heavy metal pollution, or to boost disease resistance,
holds a lot of promise for long-term agricultural productivity.
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INTRODUCTION

Global food demand is quickly rising, especially
in emerging countries where agricultural lands and
resources are insufficient to support the efficient
crop production required to fulfill such a pressing
need for food. Crops generally face an increasing
number of abiotic and biotic stress combinations as
a result of global warming and possible climatic
anomalies, which adversely influence their growth
and production (Narsai et al., 2013; Suzuki et al.,
2014., Pandey et al., 2015; Santoyo et al., 2017).
Cereals, for example, wheat, rice, maize, and
sorghum are the most essential crops for the human
diet. In a world where the population and need for
food are growing, it is critical to assure high crop
yields to meet current and near-future demands while
also mitigating the effects of climate change. In

recent decades, plant scientists and agronomists have
boosted crop output through breeding programs and
agronomic methods such as high-efficiency irrigation
systems and ambient-controlled greenhouses.
Advances in whole genome sequencing have
enhanced breeding programs and allowed for the
discovery of genomic variants in wild crop relatives,
allowing for the identification of environmentally
adapted and climate-resistant crops (Varshney et al.,
2011; Bansal et al., 2013). This method, however, is
limited to species that have a high-quality reference
genome sequence and wild related populations that
thrive in a variety of conditions (Henry, 2014), in
addition to the technological challenges, which are
labor-intensive, expensive, and unwelcomed by
customers. Agro-biosystems that include the whole
agroecosystem biochemical diversity and their ability
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to buffer the negative consequences of poor soil
fertility, abiotic stress, pathogens, and pests are
needed to increase agricultural productivity
sustainably (Tilman et al., 2011; Timmusk et al.,
2017). Soil is a composite system that includes an
extensive range of conditions with varying physical,
chemical, and biological characteristics. It is one of
the biggest reservoirs of microbial biomass and
variety, serving as a reservoir for microbe recruitment
and enrichment of root endophytic populations
(Bulgarelli et al., 2012; Yeoh et al., 2017). Agricultural
microbial biotechnology, which incorporates
positive plant-microbe and microbiome interactions,
might be a viable long-term option for increasing
agricultural productivity (Timmusk et al., 2017).

Abiotic and Biotic stresses

Plants are constantly subjected to biotic stresses
produced by pathogens as well as unfavorable
environmental circumstances such as soil salinity,
drought, high temperatures, nutritional shortages,
and heavy metal exposure in nature (De Coninck et
al., 2015; Antoniou et al., 2017; Hacquard et al.,
2017) that reduce crop growth, development, and
production across the world (Gontia-Mishra et al.,
2014).

Salinity

Salinity is a major hazard to agriculture, affecting
about 10% and 25-30% of total arable and irrigated
areas, respectively (Aquastat, 2016; Shahid et al.,
2018). It has an impact on not just crop yield but
also soil stability and characteristics. Salinity is
predicted to affect approximately 27% of the world’s
arable land, or one-third of all arable land (Al Omron
et al., 2012). Salt stress is harmful to plant growth
because it causes osmotic and ionic stress in plants,
which results in decreased water absorption,
transpiration, photosynthesis, and ionic homeostasis
disruption (Kaushal, 2020). Furthermore, high levels
of reactive oxygen species (ROS) lead to oxidative
stress, which damages DNA, proteins, and
membranes (Liu et al., 2017). Saline soil hinders
crops from growing normally, resulting in low crop
yields or even crop failure (Sagar et al., 2020; Yadav
et al., 2019). Plants’ growth and development are
influenced by the quality of the soil, its nutritional
content, and its physicochemical qualities (Majeed
et al., 2018). The usual techniques of amelioration of
soil salinity i.e., the cultivation of salt-tolerant crops
(Nia et al., 2012), plant breeding, soil scraping, and

chemical leaching of excess salts by adding gypsum,
calcium chloride, and other chemicals have had
some success, but these have detrimental
consequences for soil health (Egamberdieva et al.,
2019) and developing countries are unable to
implement these strategies (Cantrell and Linderman
2001).

Drought

Climate change-induced water scarcity poses a
serious agricultural hazard, limiting crop growth and
production, and hence food security. Droughts and
high heat have lowered worldwide cereal output by
9-10% in recent decades, with this phenomenon
linked to a decrease in both harvested area and
yields (Lesk et al. 2016). During droughts that
occurred in the last few decades, the harvested area
decreased by more than 5% (Lesk et al. 2016),
highlighting the present continuous depletion of
agricultural soil. Drought stress changes rhizosphere
physicochemical and biological characteristics that
influence soil microbial activity and agricultural yield
(Vurukonda et al., 2016). Drought stress also lowers
chlorophyll concentration due to pigment photo-
oxidation generated by an oxidative burst caused by
an excess of ROS (Farooq et al., 2009), which impacts
protein and lipid peroxidation, compromising
membrane integrity and stability (Mittler, 2002;
Moran et al., 1994). The stomatal closure, which
increases incoming radiation relative to available
intracellular CO2, causes a ROS burst driven by
water shortage, interrupting the rate of electron
generation (Murata et al., 2008). As a result, as
drought-induced stomata shut, photosynthesis, gas
exchange, and water usage are all affected, resulting
in a reduction in leaf expansion and, plant growth
and yield.

Heavy Metal Pollution

The anthropogenic heavy metal build-up, such
as that caused by industrialization or contemporary
farming methods, produces a wide range of human
health, environmental, and agricultural issues
(Emamverdian et al., 2015). The concentration of
heavy metals in soil is determined by the
composition and character of the bedrock; but, in
agricultural soils, the concentration of these elements
may be raised by adding various types of substances
that contain them in varying proportions.As a result,
heavy metal might be extracted by plants, posing a
severe threat to agricultural yield and quality
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(Keunen et al., 2011). To deal with heavy metal
toxicity, plants have evolved a variety of physiologic,
metabolic, and genetic defensive mechanisms. These
methods are largely aimed at preventing heavy metal
absorption into plant roots by limiting metal uptake
from the soil (Patra et al., 2004; Dalvi and Bhalerao,
2013). Low-molecular-weight organic acids from
root exudates, for example, may function as
chelating agents to prevent plants from absorbing
heavy metals (Montiel-Rozas et al., 2016).
Furthermore, if heavy metals can penetrate plant
tissues, detoxification and antioxidant defense
mechanisms are triggered (Manara, 2012). Despite
these defense systems, most plant species experience
poor growth and production when exposed to high
levels of heavy metals. This issue can be solved with
the help of microbes (Burd et al., 2000; Ma et al.,
2011).

Temperature

Global climate change affects the present and
future mean temperatures, as well as the possibility
of severe weather events such as periods of intense
heat and frost. Heat and cold shocks are physical
shocks that impact plant growth and production by
directly altering molecular (DNA and proteins) and
supramolecular (membranes and chromosomes)
structures (Ruelland, and Zachowski, 2010; Knight,
and Knight, 2012). Excessive production of ROS,
which primes to oxidative stress (Hasanuzzaman et
al., 2013; Ritonga and Chen, 2020), causes damage
to membranes, pigments, proteins, and nucleic acids,
and therefore impairs plant growth and
improvement(Xu et al., 2006; Adam and Murthy,
2014), is one of the main effects of heat and cold
stress. Heat and cold stress, like other forms of abiotic
stress, change chlorophyll production and
photosynthesis because both stressors have a major
effect on chloroplast metabolism and structure. For
example, heat stress disrupts the structural structure
of thylakoids and promotes grana stacking loss and
swelling (Ashraf and Hafeez, 2004; Rodríguez et al.,
2005). Whereas, low temperatures cause changes in
the photosynthetic apparatus’ structure, resulting in
a reduction in the number of functional PS II reaction
centers, the loss of light-harvesting Chl, and the
development of a large thylakoid protein complex
implicated in LHC II, PS II, and PS I (Savitch et al.,
2002; Ensminger et al., 2006). Even brief periods of
both forms of stress can significantly diminish crop
output (Nievola et al., 2017). Heat and cold responses

in plants include alterations at the molecular,
physiological, and cellular levels. Plants create
suitable solutes, antioxidants, and osmoprotectants
chemicals, among other things, to organize and
protect proteins and cellular structures, as well as to
maintain cell turgor by osmotic adjustment (Ritonga
and Chen, 2020; Janska et al., 2010; Julca et al.,
2012; Zhu et al., 2016). Furthermore, cold and heat
stress can cause plants to absorb less water owing to
a reduction in their water potential, which can lead
to dehydration (Nievola et al., 2017; Levitt, 1980).

Biotic stress

Several pathogenic diseases instigated by fungi,
bacteria, viruses, and nematodes are important biotic
restraints that result in reduced crop development
and yield outputs (Majeed et al., 2018). Plant diseases
are a persistent and serious danger to the world food
supply, with estimates of 20 to 30 percent global
crop losses, mostly in food-insecure countries
(Savary et al., 2019). Pesticide usage, resistance gene
breeding, and genetic modification of plant immune
components have all aided in reducing the threat
(Vannier et al., 2019). However, high pesticide intake
raises economic, environmental, and safety
problems. Therefore, antibiotic microorganisms are
a feasible alternative that is becoming more
acceptable. Microbial products and inoculants for
plant protection have lately received interest in this
area, owing to significant efforts to systematically
extract, identify, and describe plant-associated
microorganisms that interact closely with healthy
plants (Finkel et al., 2017).

Sustainable methods, such as the use of plant
beneficial microbes, are becoming more essential
because of these disadvantages. Plant growth-
promoting bacteria (PGPB) may be effectively
managed in the agro-farming system as alternative
techniques to minimize most of the biotic and abiotic
stresses that crop experience and to enhance their
yields, resulting in the usage of synthetic fertilizers
being reduced to a minimum (Majeed et al., 2018).

Plant Growth Promoting Endophytic Bacteria

Plant-beneficial bacteria are a type of bacteria
that assist their host plants to cope with a variety of
biotic and abiotic stressors that might inhibit their
growth (Miliute et al., 2015) (Table 1).

In their host plant, these bacteria may survive
both outwardly and inside. Bacteria that reside
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Table 1. List of reported endophytic bacterial strains isolated from cereal crops to alleviate various abiotic stresses.

Cereal crops Endophytic Bacteria Stress References
Management

Barley (Hordeum vulgare L.) Hartmannibacter diazotrophicus Salinity Suarez et al. (2015)

Maize (Zea mays L.) Azospirillum lipoferum Drought Cohen et al. (2009)
Alcaligenes faecalis Naseem and Bano (2014)
Azospirillum brasilense Cura et al. (2017)
Herbaspirillum seropedicae Naveed et al. (2014)
Bacillus phytofirmans
Enterobacter sp.

Rhizobium, Pseudomonas, Salinity Bano and Fatima (2009)
Bacillus sp., Arthrobacter pascens Ullah and Bano (2015)

Rice (Oryza sativa L.) Bacillus amyloliquefaciens, Salinity Chauhan et al. (2019)
Pseudomonas alcaligenes, Nautiyal et al. (2013)
Pseudomonas pseudoalcaligenes Rangarajan et al. (2002)
Pseudomonas pseudoalcaligenes Jha and Subramanian
Bacillus pumilus (2014)

Sorghum (Sorghum bicolor) Pseudomonas brassicacearum Salinity Gamalero et al. (2020)

Wheat (Triticum aestivum L.) Pseudomonas pseudoalcaligenes, Salinity Jha and Subramanian
Bacillus amyloliquefaciens, (2014)
Azotobacter vinellandii, Nautiyal et al. (2013)
Bacillus pumilus, Burkholderia sp. Sahoo et al. (2014)
Curtobacterium albidum, Khan et al. (2016)
Sphingomonas pokkalii sp. Sarkar et al. (2018)
Serratia sp. Vimal et al. (2019)
Klebsiella sp. Palaniyandi et al. (2014)

Ansari et al. (2019)
Singh and Jha (2016)
Singh et al. (2015)

Azospirillum brasilense, Drought Kasim et al. (2013)
Bacillus amyloliquefaciens Yaghoubian et al. (2014)
Piriformospora indica Ali et al. (2011)
Pseudomonas putida Chen et al. (2017)
Pantoea theicola

outside of their host plants are categorized as either
epiphytic (living on the plant’s leaf surfaces) or
rhizospheric (living in the soil’s plant roots)
(Compant et al., 2010). Whereas, endophytic bacteria
are bacteria that live and grow inside their host plant
(Hardoim et al., 2008). All of these bacteria have
several features that aid in the development of the
host plant (Compant et al., 2010). Endophytic
bacteria are bacteria isolated from surface-sterilized
plant tissues that do not damage their host plants
(Santoyo et al., 2016). Endophytic bacteria can not
only assist the host plant to develop but also help it
to tolerate stress and create allelopathic effects on
competing plant species (Cipollini et al., 2012; Mei
and Flinn, 2010; Rosenblueth and Martönez-
Romero, 2006). As a result, they help their host
survive biotic and abiotic threats, as well as
competition from other organisms. Endophytic

bacteria have been found to enhance the
development of plants such as wheat, rice, canola,
potato, tomato, and many others, according to
several studies (Mei and Flinn, 2010; Sturz and
Nowak, 2000). Bacterial endophytes may have an
advantage over bacteria in the rhizosphere because
residing within a plant’s tissues allows them to
remain in constant touch with the plant’s cells.
Bacteria in the rhizosphere, on the other hand, may
be able to penetrate and colonize plant roots
(Santoyo et al., 2016). According to recent estimates,
the world has over 300,000 plant species, the great
majority of which include endophytes (Smith et al.,
2008). Microbial endophytes have been discovered
in all of the plant species studied. An endophyte-free
plant is a rare exception to what is normally seen in
nature, according to Partida-Martinez and Heil
(2011).
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Host plant growth promotion mechanisms

The impact of endophytic bacteria on plant
health and growth has received a lot of attention
(Compant et al. 2019). Endophytic bacteria have
been proven to have many positive impacts on their
plant hosts, both directly and indirectly (Figure 1).
They can help plants grow better under normal and
stressed conditions by assisting them in getting
nutrients (by biological N2 fixation) and solubilizing
minerals (e.g. P, K, and Fe). They can also help
plants grow better by modulating growth-related

hormones (i.e. producing indole acetic acid,
gibberellin, cytokinins, and 1-aminocyclopropane-
1-carboxylate deaminase). Endophytic bacteria
indirectly improve plant growth by discouraging
phytopathogens through mechanisms such as
antibiotic and lytic enzyme production, nutrient
unavailability for pathogens, and priming plant
defense mechanisms, thereby protecting the plants
from future pathogen attacks and increasing plant
tolerance to abiotic stresses (Miliute et al., 2015;
Etalo et al., 2018).

Fig. 1. Mechanism of plant growth-promoting endophytic bacteria to improve cereal crops growth under abiotic and biotic
stresses
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A plant without endophytes would be less able
to cope with infections and more vulnerable to
environmental stress conditions, according to
findings of rhizospheric PGPB distribution in nature
(Timmusk et al., 2011). Plant-endophyte interactions
are thought to be over 400 million years old, and
they have proven to be so successful that plants still
interact with and even require endophytes to thrive
in harsh environments (Rodriguez and Redman
2008). Vertical seeding or horizontal transfer of
endophytic microorganisms from the soil to the
plants are two ways endophytic bacteria can enter
and colonize plants. Plant-microbe interactions
continue to provide mutualistic advantages in either
case (Verma and White, 2018; Huang et al., 2016).
Endophytic microorganisms can provide the
following benefits to their plant host as a result of
this extremely advantageous mutualistic interaction:
They boost the nutrients accessible to the plant host,
function as protective defenders against diseases and
destructive pests, improve the plant’s capacity to
endure or tolerate environmental stressors, aid in
the modulation of their plant host’s development,
and can also help with weed growth (Irizarry and
White, 2018; Verma et al., 2018; 2017). In reality,
plants have the potential to “choose” as endophytes
those bacteria that offer them some advantage from
their plant-associated microbial communities,
whether aboveground or belowground.

Plants are connected with bacteria that promote
stress resistance systems under stressful situations,
according to research (Marasco et al., 2012; Santoyo
et al., 2016). Endophytes have been presented as a
potential alternative to the indiscriminate use of
agrochemicals because of these positive interactions
between microorganisms and plants. Pests are not
eliminated even with the use of agrochemicals, and
yearly worldwide pest-induced agricultural losses
continue to be up to 25% of overall production, in
addition to causing disease resistance and
environmental pollution (Lugtenberg, 2015). In
comparison to the soil or the rhizosphere, the
endophytic habitat provides a protected
environment, giving bacteria capable of colonizing
it an ecological advantage (Downie 2010; Berendsen
et al. 2012). Bacteria within the host have access to a
lot of resources, have little competition, and are
protected from external stress, and in certain
circumstances, this lifestyle allows their spread by
passive transfer (Compant et al. 2020; Badri et al.
2009). Similarly, living in plant tissues allows these

bacteria to interact directly with their hosts, thereby
altering plant phenotypic (Downie 2010).

The positive effects of the endophytic
microbiome have long been used for human benefit
through the use of bacteria on crops to increase
yields (Compant et al. 2019). Wounds and natural
breaks, such as the zones of the emergence of the
lateral roots and the root cap, are used to get access
to the plant tissues (Knief et al. 2011; Spaepen 2015).
Instead, active mechanisms involving endoglucanase
and pectinolytic enzymes that macerate plant cell
wall polymers locally have been reported (Reinhold-
Hurek et al. 2006; Compant et al. 2005). Endophytic
bacteria are thought to generate lower amounts of
these enzymes than phytopathogens, preventing
plant defenses from being triggered (Elbeltagy et al.
2000; Afzal et al. 2019). Endophytic bacteria can
colonize the plant systemically by being carried by
xylem channels, or they can colonize a particular
tissue by colonizing the intercellular gaps (Reinhold-
Hurek and Hurek 1998; Spaepen 2015). PGPB may
be successfully managed in the agro-farming system
as alternative methods to regulate most of the abiotic
stressors that crop experience and to enhance their
yields, resulting in the usage of synthetic fertilizers
being reduced to a minimum (Majeed et al., 2018).

CONCLUSION

Endophytic bacteria found in plants have a lot
of potential as biofertilizers and biopesticides. We
demonstrated that there are several examples of
promising outcomes in the literature, suggesting that
endophytes can play an important role in limiting
the damage induced by abiotic and biotic stressors.
Although many of these bacteria have been found
and can have a wide range of hosts, they rarely
produce consistent results in the field. One cause for
this is because we don’t fully understand the intricate
dynamics that govern plant-endophyte interactions.
At the molecular level, we need to find out the
intricacies that regulate the plant-endophyte
interaction. More work has to be done to increase
the efficacy of endophytic bacteria by developing
effective formulations, administration procedures,
and integrated approaches in cereal crops.
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