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ABSTRACT

Watershed prioritization involves assessing various sections within a river basin to
determine their requirements for effective land and water resource planning and
management. To achieve economic effectiveness and technical efficiency, decision-
makers need to allocate investments optimally to the most critical watersheds.
Therefore, the goal of this study is to evaluate the Sub-Watershed Prioritization
Tool (SWPT), a user-friendly GIS tool that uses Python programming language,
in the Lower Sutlej River Basin for watershed prioritization. The study analyzed
morphometric and topo-hydrological factors and was designed to automatically
identify watersheds with critical and priority status through geospatial and
statistical analysis. The river basin, having an area of 8577 km2, was delineated
into fourteen watersheds (WS1 to WS14) using the SWAT model. The ALOS
PALSAR DEM, ArcGIS10.4 a, and SWPT were utilized to evaluate the
morphometric and topo hydrological factors of the delineated watersheds. The
priority ranks to the watersheds were assigned as compound parameter value
(CPV), which was calculated by weighted sum analysis. Watersheds with the
lowest CPV were given the highest priority rating, and vice versa. Based on the
results WS9 was assigned the first rank whereas WS5 was assigned the 14th rank.
Hence, WS9 needs immediate attention for the management of land and water
resources. A modern tool such as SWPT can replace time-consuming
morphometric and topo-hydrological factors for watershed prioritization. It is
important to implement appropriate soil and water management measures in the
highly prioritized watershed (WS9) through the study. Geospatial technology-
based prioritization of watersheds (based on morphometric and topo-hydrological
factors) has great potential to support land and water conservation strategies.

Keywords: Geospatial technology, morphometry, watershed prioritization, river
basin

INTRODUCTION

In many developing nations, the decision-
making process for the planning and management of
watersheds is frequently challenging. This challenge
arises due to constraints on human resources and
financial budgets, coupled with the high costs and
time-intensive nature of carrying out these activities
(Fan and Shibata, 2014; Kim and Chung, 2014;
Rahmati et al., 2016).) The consensus among most
scientists is that watersheds constitute the most

suitable landscape unit for in-depth analysis,
especially concerning the planning and management
of land and water resources. Regrettably, over the
past few decades, watersheds have experienced
degradation or face the risk of impairment due to
human activities and the influence of climate change
caused by human actions (Yadav et al., 2018). Sub-
watershed prioritization stands as a fundamental
principle in achieving integrated and effective
watershed management. This approach aids in
mitigating issues like soil erosion, floods, and
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sediment loads, while also identifying sub-
watersheds of utmost concern to attain sustainable
development goals (Chowdary et al., 2013; Altaf et
al., 2014; Fan and Shibata, 2014). Remote sensing
(RS) and Geographical Information Systems (GIS)
are particularly advantageous for analyzing drainage
patterns within catchments and sub-catchments, as
well as for flood management and water resource
modeling (Miller & Kochel, 2010; Bali et al., 2012).
These technologies are efficient, time-saving, and
well-suited for comprehensive 3-dimensional
planning due to their capacity to handle intricate
challenges and extensive datasets related to change
and restoration (Kumar et al., 2016). The application
of RS and GIS systems in geomorphological
mapping has led to more objective and successful
landform segmentation, measurement, and
classification. Numerous studies (Magesh et al.,
2011; Bhagwat et al., 2011; Magesh et al., 2013;
Singh et al., 2013; Magesh & Chandrasekar, 2014;
Das, 2014; Sujatha et al., 2015; Kumar et al., 2017;
Rai et al., 2017a; Rai et al., 2017b; Rai et al., 2018;
Kandpal et al., 2018; Prabhakaran & Raj, 2018;
Gaikwad et al., 2018, Malik et al., 2019; Singh et al.,
2021; Sharma et al., 2023) underscore the significance
of RS and GIS techniques. Using GIS to assess
morphometric parameters offers a viable means to
characterize the hydrological response behavior of
watersheds (Rai et al., 2017). RS and GIS have
emerged as pivotal scientific tools for the detection
and analysis of natural resources, finding frequent
application in soil resource characterization
(Srivastava & Saxena, 2004) and prioritizing
watershed activities (Suresh et al., 2004). Beyond
researching the morphometry of river basins, RS
and GIS can be effectively employed to strategize
the optimal utilization of surface runoff, contributing
to the sustainable development of river basins,
particularly those reliant on monsoon patterns
(Mangan et al., 2019).

However, among the previously mentioned
studies, the Weighted Sum Analysis (WSA)
introduced by Aher et al. (2014) emerges as a notably
effective approach for prioritizing sub-watersheds
within regions where data is limited or where
gauging is absent. The method (WSA) focuses on
utilizing morphometric parameters related to relief,
area, and linear aspects for the prioritization of sub-
watersheds, relying solely on digital elevation models
(DEMs). The assessment of morphometric
characteristics holds particular importance in the

context of sustainable land and water resource
preservation, especially within developing nations
constrained by a lack of comprehensive quantitative
data and allocated budgets for integrated watershed
management (Avinasha et al., 2011; Thomas et al.,
2011; Prasannakumar et al., 2013; Sujatha et al.,
2014; da Silva et al., 2017; Sharma et al., 2023).
Adhami and Sadeghi (2016) emphasize that factors
related to topo-hydrology and geomorphometry play
a pivotal role in determining suitable locations for
implementing land and water conservation measures
within sub-watersheds. These factors provide
invaluable insights into the evolution of catchments
and their influence on the development of drainage
morphometry (Bali et al., 2012; Patel et al., 2013;
Sujatha et al., 2014). Previous research published in
north-western India on morphometric analysis and
prioritization of distinct watersheds has been
published on the Shivalik foothills by Bhatt et al.
(2007); Kumar & Kushwaha (2013); Kaur et al.
(2014); Singh et al. (2016); Kushwaha et al. (2016);
Kushwaha & Bhardwaj (2017); Sushanth &
Bhardwaj (2019); Singh et al. (2021); Singh et al.
(2023). The lower Sutlej sub-basin is currently facing
multiple challenges, including soil erosion by water
in upstream watersheds as highlighted by Sharma et
al. (2023), degradation of water quality as indicated
by Setia et al. (2020), groundwater depletion, and
the impacts of climate change, as studied by Kaur et
al. (2022). Within the study area, numerous
watersheds prone to erosion are significantly
impacted, adversely affecting the Sutlej River’s
carrying capacity and water quality. It is essential to
prioritize these erosion-prone watersheds to facilitate
the implementation of targeted strategies for land
and water resources management, an aspect
emphasized by Sharma et al. (2023). Up to now,
there has been limited address regarding the
inclusion of topo-hydrological factors, such as the
topographic wetness index (TWI), stream power
index (SPI), and sediment power index (STI), in the
process of prioritizing watersheds. It’s noteworthy
that no prior research in the study area has
simultaneously addressed the aforementioned
parameters for these specific prioritization objectives.

Recognizing the significance of analyzing
morphometric and topo-hydrological factors in
watersheds, this study was undertaken to explore
the following objectives: (i) assess the morphometric
characteristics of fourteen watersheds within the
Lower Sutlej River basin, and (ii) establish a
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prioritization scheme for effective land and water
resource management based on morphometric and
topo-hydrological factors using SWPT tool.

MATERIAL AND METHODS

Study area

The study was conducted within the lower Sutlej
Sub-basin of Indian Punjab, situated between
latitudes 30°39′17′′ to 31°39′15′′ N and longitudes
75°04′37′′ to 76°48′01′′ E (Fig. 1). The major land
use and cover types in this area include Agriculture

(73.3%), Settlement (13.6%), Vegetation (11.1%),
Waterbody (1.0%), Scrub (0.66%), and Bare ground
(0.24%) (Sharma et al., 2023b). Agriculture
dominates the region’s land usage due to its
significance as the primary occupation. The river
basin has been delineated into fourteen watersheds
using the SWAT model (Sharma et al., 2023). The
stream order, along with watersheds of the lower
Sutlej River basin is depicted in Fig. 2. The basin’s
landscape comprises flat Punjab plains, largely
consisting of Pleistocene and recent alluvium
deposited by the Indo-Gangetic rivers. While most
of the basin is covered by quaternary sediments, the

Fig. 1. Location of the Lower Sutlej River basin, Punjab, India
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Kandi region is primarily characterized by Neogene
sedimentary rocks as shown in Fig. 3. The study
area encompasses ten districts of Punjab state:
Hoshiarpur, Jalandhar, Kapurthala, Ludhiana,
Moga, Shahid Bhagat Singh Nagar, Sahibzada Ajit
Singh Nagar, Ferozpur, Fatechgrah Sahib and
Rupnagar. The climate is semi-arid and
characterized by a hot subtropical monsoon, with
distinct seasons of cold winters and hot summers.
Influences from the Himalayas in the north and the
‘Thar’ desert of Rajasthan in the south and southwest
are significant. The average annual rainfall was
873.78 mm, displaying notable spatial and temporal
variability. The monsoon season (July to September)
contributes to about 75% of the total annual rainfall.
The study area spans approximately 8577 km²,
extending up to the Harike Barrage downstream of
Bhakra dam, marking the confluence of the Sutlej
and Beas rivers. The most prevalent soil textures in
the basin include sandy loam, loam, and clay.
According to Fig. 4 slope within the study watershed
varied between 0 to more than 30%. The slope is
proportional to runoff velocity, which determines
how long rainfall takes to reach the river beds that
make up the river basin’s system (Villela & Mattos,
1975). Slope maps are used for numerous purposes,

such as planning settlements, agriculture,
deforestation and reforestation, water collection
plans, engineering constructions, and morphological
conservation in watersheds (Sreedevi et al., 2005).
The presence of the Shivalik foothills in the northern
and eastern parts of the area contributes to the steeper
slopes. These elevated slopes render this particular
region susceptible to soil erosion, a concern
accentuated by previous studies (Yousuf et al., 2022;
Sharma et al., 2023). Due to the rapid runoff from
sloped terrain, erosion is more pronounced, and
opportunities for groundwater recharge are limited.

Methodology

For this study, the Sub-watershed Prioritization
Tool (SWPT), an automated and user-friendly
extension developed and validated by Rahmati et al.
(2019), was employed. The SWPT is designed to
evaluate and categorize sub-watersheds, highlighting
those of utmost importance. By analyzing
morphometric and topo-hydrological factors derived
from DEMs, the tool generates these evaluations
automatically. Its utilization aids decision-makers
in pinpointing crucial sub-watersheds necessitating
strategic soil and water conservation interventions

Fig. 2. Drainage network of the study area
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Fig. 3. Geology of Lower Sutlej River basin

Fig. 4. Slope of the Lower Sutlej River basin
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(Aher et al., 2014). SWPT was incorporated into the
ArcToolbox as an extension for the ArcGIS 10.4
software. A depiction of the SWPT conceptual
architecture is presented in Fig. 5. For the current
study, morphometric and topo-hydrological
parameters were derived from the ALOS PALSAR
DEM with a resolution of 12.5 m. Prioritizing
watersheds was based on morphometric and topo-
hydrological parameters including: (1) Areal aspects
(drainage density (D), stream frequency (Fs),
drainage texture (Rt), form factor (Rf), circularity
ratio (Rc), constant of channel maintenance (C),
elongation ratio (Re), and compactness coefficient
(Cc)); (2) Linear aspects (bifurcation ratio (Rb)); and
(3) Topo-hydrological factors (topographic wetness
index (TWI), stream power index (SPI), and
sediment transport index (STI). To ensure the
appropriate ranking of hydrological units, this study
adopts the WSA approach originally introduced by
Aher et al. (2014). The WSA method integrates
rigorous statistical techniques with geospatial
technologies to determine the optimal combination
of parameters for analysis. To mitigate potential
individual biases related to various morphometric
and topo-hydrological factors, the WSA technique
calculates the relative significance of each parameter
through statistical correlations. Additionally, it
assigns weights to individual parameters based on
their inherent importance (Equation (1)) as outlined
by Aher et al. (2014):

Prioritization = Σn
i=1 Wi × Xi (1)

Where,

Wi = Weight of each morphometric parameter
calculated by the WSA approach

Xi = Value of morphometric parameters.

The mentioned approach can effectively identify
the efficiency of factors by assessing their impacts
separately (Rahmati et al., 2019)

Hydro-geomorphometric analysis

This analysis encompasses two categories of
factors: morphometric factors and topo-hydrological
factors. Morphometric factors comprise variables
like drainage density (D), stream frequency (Fs),
drainage texture (Rt), form factor (Rf), circularity
ratio (Rc), constant of channel maintenance (C),
elongation ratio (Re), compactness coefficient (Cc),
and bifurcation ratio (Rb). On the other hand, topo-
hydrological parameters encompass topographic
wetness index (TWI), stream power index (SPI),
and sediment transport index (STI). TWI is a
hydrological parameter used to characterize the
wetness conditions of a landscape or terrain. It
quantifies the potential for water accumulation and
movement across a topographic surface. It is
commonly employed in hydrological and ecological
studies to understand soil moisture, surface runoff,
and the distribution of wetland areas. The TWI is

Fig. 5. Processing steps flow chart for prioritizing watersheds
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derived from DEMs by considering the contributing
area and slope. The contributing area represents the
upslope contributing area that drains into a particular
location, while the slope indicates the steepness of
the terrain. The SPI is a parameter used to quantify
the erosive power of flowing water within a river or
stream channel. It provides a measure of the
potential for sediment transport and erosion by
considering the channel’s slope and water discharge.
The SPI is commonly used in geomorphology,
hydrology, and river engineering studies to assess
the erosional dynamics of streams and rivers. The
STI is a metric used to assess the potential for
sediment transport within a river or stream channel.
It considers factors such as channel slope, discharge,
sediment size, and sediment supply. The STI helps
estimate the transport capacity of a stream or river
and provides insights into the erosional dynamics

and sediment transport potential. Both sets of factors
are integrated into the design of the SWPT tool,
enabling the prioritization of watersheds for targeted
interventions. Utilizing a DEM with a pixel size of
12.50 meters, the study area’s morphometric and
topo-hydrological factors were extracted for each
watershed. The SWPT extension tool facilitated the
automated computation of these factors.
Morphology and topo-hydrology parameters were
computed using the methodology given in Table 1.

Prioritization of watersheds

To prioritize the watersheds within the study
area, the SWPT tool was employed to compute
correlation coefficients between pairs of
morphometric and topo-hydrological factors
automatically. A correlation matrix was then

Table 1. Morphology and topo-hydrology parameters were computed using the following methodology

S. Parameters Formula Reference
No.

1 Stream frequency (Fs) Fs = Nu/A Horton (1932)
where Nu is the total number of stream segments of order
'u' and A is the area enclosed within the boundary of the
watershed divide (Basin area)

2 Compactness constant (Cc) Cc= 0:2821P/A0.5 Horton (1945)
where P is the length of the watershed divide that surrounds
the basin (Basin perimeter)

3 Constant of channel C = 1/D Schumm (1956)
maintenance (C) where D is drainage density

4 Bifurcation ratio (Rb) Rb = Nu/Nu+1 Schumm (1956)
where Nu+1 is the number of segments of the next
higher-order

5 Drainage density (D) D =Lu/A Horton (1932)
where Lu is the total stream length of order’ u’

6 Elongation ratio (Re) Re= √4 × A/Pi/Lb Schumm (1956)
where Lb is the distance between the outlet and the farthest
point on the basin boundary (Basin length)

7 Circularity ratio (Rc) Rc= 4× Pi × A/P2 Miller (1953)
where P is the length of the watershed divide that surrounds
the basin (Basin perimeter)

8 Form factor (Rf) Rf = A/Lb2 Horton (1932)
where Lb is the distance between the outlet and the farthest
point on the basin boundary (Basin length)

9 Drainage texture ratio (Rt) Rt = Nu/P Horton (1945)
10 Topographic wetness index TWI = ln(As / tan β) Beven and Kirkby

(TWI) Where: (1979)
As = Upslope contributing area
β = Slope in radians

11 Stream power index (SPI) As × tan β Whipple and
Tucker (1999)

12 Stream transport index (STI) STI =(m+1) × As/22:13m × sinb/0:0896n Moore and Burch
where b is the local slope gradient in degrees, m is the (1986)
contributing area exponent, and n is the slope exponent
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generated, aiding in determining the factors that
contribute to prioritization (Rahmati et al., 2019).
For this study, factors with correlation coefficients
exceeding 0.6 were chosen for consideration. Using
these selected factors, the SWPT tool calculates the
WSA index, which in turn establishes the
prioritization of watersheds. The tool arranges
watersheds in descending order, with the most
vulnerable to runoff generation and soil erosion
ranking first as number 1, and the least susceptible
one placed at the bottom of the list.

RESULTS AND DISCUSSIONS

Geomorphometric characteristics

The outcomes of geomorphometric parameters,
obtained through the utilization of an automated
GIS-based SWPT, are presented in Table 2. Stream
frequency (Fs) measures the ratio between the total
number of streams in a basin area and the total
number of streams (Horton, 1932). Fs are classified
as very high (20–25), high (15–20), moderately high
(5–10), moderate (10–15), and low (0–5)
(Venkatesan, 2014). The texture of the drainage
network is replicated by stream frequency, which is
typically decided by the lithology of the basin. The
basin’s Fs value has a positive association with the
area’s drainage density value, showing that stream
number increases as drainage density increases. It
can be observed that the stream frequency (Fs) varies
between 0.00000125 (WS5) and 0.0000000857
(WS9). A bifurcation ratio (Rb) is the number of
stream segments of order U divided by the number

of stream segments of the next higher-order (U+1)
(Strahler, 1964). It is determined by the watershed’s
physiographic features, slope, and climate. Stream
integration in a drainage basin is determined by Rb,
a dimensionless parameter that takes account of
different orders of flow in the basin and normally
ranges from 3.0 to 5.0. It indicates the geological
and tectonic properties of a watershed and can be
used to predict various elements of a river basin
(Sharma et al., 2015). The lower the Rb value, the
less structurally disturbed or partially disturbed the
catchment has been (Verstappen, 1983), with no
drainage pattern distortion due to geological or
structural control (Chopra et al., 2005). A circular
basin with high infiltration capacity and fewer
streams in the catchment has a lower Rb. As Rb

increases, flood damage is more likely to occur
(McCullagh, 1978), indicating high overland flow
with greater soil erosion and poor sub-catchment
recharge. A greater Rb value implies an early peak in
a hydrograph, indicating the possibility of flash
flooding during rainfall storms (Hajam et al., 2013).
Bifurcation ratio (Rb) results indicate the highest
value in WS2 (3.201), while the lowest is found in
WS7 (1.390). The basin area divided by basin length
is called the form factor (Rf) (Horton, 1945). The Rf

for a fully round basin would always be larger than
0.78. The lower values of Rf indicate a long basin
shape. A watershed with a greater Rf value achieves
a peak runoff rate/flow in a small period, whereas a
watershed with a lower Rf value results in a flow for
longer periods with a flatter peak (Waikar & Nilawar,
2014). Regarding the Rf, SWPT results reveal the
highest value in WS7 (0.529) and the lowest in WS14

Table 2. Morphometric and topo-hydrological parameters of the watersheds

Watershed             Parameters
Name Fs Rb Rf Re Rc D Rt Cc C TWI SPI STI

(×10-6)

WS1 0.2416 2.558 0.333 0.651 0.108 0.001 0.000 3.040 1212.98 9.910 3.567 9.124
WS2 0.880 3.201 0.301 0.619 0.130 0.001 0.001 2.771 843.99 10.528 3.244 8.576
WS3 0.267 2.213 0.220 0.529 0.143 0.001 0.001 2.648 1222.64 10.202 3.334 9.136
WS4 0.295 2.122 0.467 0.771 0.139 0.001 0.001 2.678 1164.36 10.061 3.462 9.103
WS5 0.25 2.309 0.497 0.796 0.071 0.001 0.002 3.764 774.63 10.495 3.190 8.341
WS6 0.5297 2.890 0.157 0.447 0.062 0.001 0.001 4.004 1257.35 10.414 3.185 8.349
WS7 0.152 1.390 0.529 0.820 0.214 0.001 0.000 2.160 1576.95 9.933 3.491 9.207
WS8 0.112 1.960 0.299 0.617 0.187 0.001 0.000 2.309 1902.82 9.710 3.634 9.259
WS9 0.857 2.383 0.166 0.460 0.089 0.000 0.000 3.347 2442.65 9.877 3.576 9.338
WS10 0.326 1.893 0.459 0.764 0.080 0.001 0.001 3.531 1246.05 10.094 3.416 8.876
WS11 0.215 1.861 0.368 0.685 0.117 0.001 0.001 2.926 1638.75 10.336 3.416 9.243
WS12 0.153 1.452 0.219 0.528 0.074 0.000 0.000 3.669 2223.78 10.381 3.265 8.917
WS13 0.393 2.854 0.206 0.512 0.100 0.001 0.001 3.156 1318.15 10.387 3.219 8.477
WS14 0.1124 2.438 0.128 0.404 0.056 0.000 0.000 4.233 2291.42 10.365 3.271 9.207
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(0.128). The ratio of the diameter of a circle with the
same area as the basin to the maximum basin length
is known as the elongation ratio (Re) (Horton, 1945;
Miller, 1953; Schumm, 1956). It is one of the most
significant parameters to consider while analyzing
the geometry of a watershed because it has an impact
on stream characteristics (Strahler, 1968). A circular
river basin outperforms an elongated basin in terms
of surface runoff discharge (Singh & Singh, 1997).
Drainage basins in dry and semi-arid climates have
Re values of <0.50, 0.50 to 0.75, and >0.75,
respectively, for tectonically active, moderately
active, and passive situations (Sarma et al., 2015). A
lower Re value implies severe erosion and sediment
load susceptibility, while a higher Elongation ratio
value suggests strong infiltration capacity with
minimal runoff (Reddy et al., 2004). The geometry
of a watershed concerning Re can be classified as
very elongated (0.5), elongated (0.5 to 0.7), less
elongated (0.7 to 0.8), oval (0.8 to 0.9), and circular
(0.9 to 0.10) (Pareta & Pareta, 2011). It can be
observed that the Re varies between 0.404 (WS14)
and 0.820 (WS7). The watershed area to the area of
a circle with the same perimeter as the watershed is
known as the circularity ratio (Rc) (Miller, 1953;
Strahler, 1964). The watershed area to the area of a
circle with the same perimeter as the watershed is
known as the circularity ratio (Rc) (Miller, 1953;
Strahler, 1964). A basin’s circulatory ratio is affected
by factors like the length and frequency of streams,
basin slope, land use/land cover, climate, relief, and
geological formations (Patel et al., 2013). It is an
essential parameter that shows the dendritic stage of
watersheds. High, medium, and low Rc values
represent the old, mature, and young stages of the
tributary watershed’s life cycle, respectively (Magesh
et al., 2012). Rc values of 0 and 1, respectively, suggest
extremely elongated and circular forms (Sreedevi et
al., 2013). In terms of Rc, WS7 acquires the highest
value (0.214), while WS14 holds the lowest (0.056).
It is a measure of how close the channels are spaced
together (Ahmed et al., 2010). It calculates the
segmentation of the landscape as well as the
possibility for runoff (Chorley, 2019). Dd has been
classified as very fine (more than 8), fine (6–8),
moderately coarse (4–6), extremely coarse (2) and
coarse (2–4) (Tavassol, 2016). Small relief of the
basin, permeable subsurface materials, and dense
vegetative conditions are indicated by lower Dd

values (6.0). High Dd values (greater than 8) suggest
high relief, subsurface materials that are
impermeable, and limited vegetation. In connection

to quick runoff in channels, such basins are
determined to be particularly vulnerable to flood
threats. Drainage texture (Dt) is the ratio between
the sum of the segments of a stream and its perimeter
(Horton, 1945) and is affected by vegetative cover,
rainfall, lithology, infiltration capacity, and the relief
characteristics of the basin (Sreedevi et al., 2013).
Smith (1950) divided the Dt into five main categories,
very coarse (less than 2), coarse (2-4), moderately
coarse (4-6), fine (6-8), and very fine (greater than
8). Analyzing drainage density (Dd) and drainage
texture (Rt), WS5 ranks highest, and WS9 ranks
lowest. The compactness coefficient (Cc) is the ratio
of a circular region’s perimeter to its circumference,
which equals the catchment’s area (Horton, 1945).
It is unaffected by watershed size, although it is
significantly influenced by watershed slope (Rai et
al., 2018). The lower the Cc number, the greater the
runoff and erodibility. A basin with a Cc value of 1 is
perfectly round. (Horton, 1932). Regarding the
compactness coefficient (Cc) factor, WS14 exhibits
the highest value (4.233), whereas WS7 showcases
the lowest (2.160). The reciprocal of Dd is the
constant of channel maintenance (Ccm) (Horton,
1945). It describes the size of landform elements in a
drainage watershed (Strahler, 1957). Lower Ccm

values indicate physical difficulties in the drainage
basin in connection to greater runoff conditions and
reduced permeability. The constant of channel
maintenance (C) factor values position WS9
(2442.646) at the top rank and WS5 (774.634) at the
bottom. Evaluating TWI, SPI, and STI, the
prioritization results indicate that WS2, WS8, and
WS9 attain the highest values, while WS8, WS6,
and WS5 achieve the lowest values (Table 2). Higher
TWI values indicate areas with potentially higher
moisture levels and increased water flow, while
lower TWI values represent drier areas or locations
with limited water accumulation. The TWI has
various applications in hydrology, including
watershed management, flood prediction, soil
moisture assessment, and wetland delineation. It
provides valuable insights into the spatial distribution
of wetness conditions within a landscape, aiding in
land use planning, conservation efforts, and decision-
making related to water resources management.
Higher SPI values indicate greater erosive power
and sediment transport potential of the flowing
water. Areas with high SPI values are likely to
experience more erosion, channel incision, and
sediment deposition, while lower SPI values indicate
reduced erosional potential. By incorporating the
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SPI, researchers and practitioners can gain insights
into the erosional dynamics of rivers and streams,
aiding in the sustainable management of water
resources, river ecosystems, and related
infrastructure.

Automated prioritization of watersheds

The correlation matrix, derived through the
WSA approach, for morphometric properties of
watersheds, is illustrated in Fig. 6. The presented
results pertain to correlation coefficients (r) with
values greater than 0.6. Stream frequency (Fs)
exhibits a significant positive correlation with
bifurcation ratio (Rb) (r = 0.46), drainage density (D)
(r = 0.91), drainage texture (Rt) (r = 0.97), and TWI
(r = 0.61). However, it demonstrates a negative
correlation with the Constant of channel
maintenance (C) (r = -0.74), SPI (r = -0.60), and STI
(r = -0.8). Form factor (Rf) is positively correlated
with Elongation ratio (Re) (r = 0.99), Circularity
ratio (Rc) (r = 0.44), and drainage density (r = 0.46),

while it exhibits a high negative correlation with
Compactness coefficient (C ) (r = -0.44 ) and C (r = -
0.51). The relationships of Drainage density (D) and
Drainage texture (Rt) with other factors reveal
positive associations with TWI and negative
connections with Constant channel maintenance (C),
SPI, and STI. TWI, on the other hand, is highly and
negatively correlated with SPI (r = -0.95) and STI (r
= -0.71). Despite a pronounced negative relationship
with Fs, D, Rt, and TWI, SPI demonstrates a
substantial positive correlation (r = 0.94) with STI.
The final prioritization of watersheds is executed
based on compound parameter values (CPV). The
watershed with the lowest CPV takes precedence,
determining the priority, followed by subsequent
watersheds ranked accordingly, as outlined by Aher
et al. (2014). CPV is calculated using the assigned
weights for each morphometric parameter. The
prioritization outcomes for watersheds are detailed
in Table 3. WS9 attains the highest priority ranking
with a CPV of -553.162. It is followed by WS14

Fig. 6. Correlation matrix of morphometric and topo-hydrological parameters
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(CPV -518.972), WS12 (CPV = -503.586), WS8
(CPV = -430.885), and so on, with descending CPV
values, culminating with WS5 (CPV = -175.441)
(Table 3). Identification of a vital watershed is an
important issue in natural resources management,
especially in the context of watershed management
techniques, because different watersheds have varied
hydrological behaviors depending on their
morphometric and topo-hydrological properties.
(Jain and Das, 2010; Javed et al., 2011). The final

watershed priority or ranking map based on
morphometric and topo-hydrological parameters of
the lower Sutlej River basin is shown in Fig. 7.

CONCLUSION

Prioritizing watersheds within a larger basin is a
pivotal stride toward optimizing watershed
management and judiciously distributing its natural
resources. Given the constraints of financial
resources, human capital, and time, this process
becomes particularly indispensable in regions
characterized by data scarcity and limited
measurement (ungauged regions),. Although various
approaches have been employed for watershed
prioritization, some prove inefficient, others lack
applicability in specific contexts, and some require
manual intervention. In this study, the methodology
was adopted to establish watershed priority using a
Python-based tool named SWPT as an extension of
ArcGIS 10.4 software. It is time-consuming and
laborious to prioritize watersheds using morpho-
metrics and topo-hydrology, and SWPT can replace
such methods. The order of the watershed
prioritization was WS9>WS14> WS12> WS8>
WS11> WS7> WS13> WS6>WS10> WS3> WS1>
WS4> WS2> WS5. One of the most degraded
ecosystems of India is the lower Shivaliks of north-

Table 3. Prioritization and final ranking of watersheds

Watershed Compound Priority
Name Parameter Value Ranking

WS9 -553.162 1
WS14 -518.972 2
WS12 -503.586 3
WS8 -430.885 4
WS11 -371.102 5
WS7 -357.032 6
WS13 -298.523 7
WS6 -284.836 8
WS10 -282.217 9
WS3 -276.976 10
WS1 -274.772 11
WS4 -263.687 12
WS2 -191.142 13
WS5 -175.441 14

Fig. 7. Priority of watersheds based on Morphometric and Topo-Hydrological Factors
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western India, where the most prioritized watershed
(WS9) is located. To identify the major problems
associated with water spread, soil erosion, and
aquifer recharge, a geospatial technique-based
approach to watershed prioritization could be used.
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