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ABSTRACT

India’s agricultural productivity relies heavily on rainfall due to its agrarian nature.
A lack of rainfall adversely affects the national economy. Effective drought
planning and management require constant monitoring to understand its complex
nature better. Droughts occur worldwide with varying severity, necessitating long-
term vegetation analysis for regional agricultural drought monitoring. This study
aims to analyze and monitor the spatial and temporal variations of agricultural
and meteorological droughts in Gujarat, India a state particularly prone to drought,
especially during failed or altered monsoon seasons. The study used the long-term
Normalized Difference Vegetation Index (NDVI) from NOAA-AVHRR data to
assess agricultural drought through the NDVI-based Vegetation Condition Index
(VCI), a popular index for describing vegetation health, from 1986-2015. The VCI
variations during the major crop-growing period of the Kharif season (June to
September) were used to determine the spatial-temporal drought conditions in
Gujarat. The standardized precipitation index (SPI) and the precipitation
evapotranspiration index (SPEI) are commonly used indicators for drought
monitoring; unlike SPI, SPEI also considers temperature. In this study, SPI and
SPEI were calculated at 1-, 3-, 6-, and 12-month timescales for 33 districts of
Gujarat from 1986 to 2015. Their performances in drought monitoring were
compared and analyzed in terms of temporal and spatial variations, consistency,
and applicability. The results show a wide variation in drought intensity among
the state’s districts. Observing the yearly variation of long-term agricultural drought
helps identify the onset, duration, and spatial extent of drought in different districts.
Strategies were developed to improve agricultural productivity in districts
frequently prone to moderate to severe drought conditions during the analysis
period. VCI values for normal and drought years were compared with SPI, SPEI,
and the Rainfall Anomaly Index derived from meteorological data, revealing a
good agreement among them. The correlation coefficient between maximum NDVI
and mean seasonal rainfall (r > 0.52) confirms the usefulness of assessing
agricultural drought. The results of SPI and SPEI show that: (1) as the timescale
increases, the temporal variations in SPI and SPEI become more consistent,
although slight differences in fluctuation value and continuity persist; (2) due to
differences in time series, drought characteristics identified by SPI and SPEI vary
significantly across different timescales, and with a longer timescale, the spatial
distributions of drought in Gujarat change. Persistent drought in the state
necessitates that the government takes appropriate preventive measures. By
identifying high-risk zones based on agricultural drought intensity maps, action
plans can be prioritized according to the severity of the drought.
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INTRODUCTION

Drought is widely regarded as the most complex
but least understood disaster, affecting more people
than any other. There is significant uncertainty about
its characteristics within the scientific and policy
communities, conducive to the absence of progress
in drought development globally. Drought is a slow-
onset, creeping natural hazard that is a normal part
of the world’s climate and has serious economic,
social, and environmental consequences. Its onset,
end, and severity are often difficult to predict.
Drought risk arises from a region’s vulnerability to
natural disasters and the risk of extended water
scarcity (Wilhite, 2000).

To mitigate the severe impacts of drought,
nations and regions must enhance their
understanding of the hazard and the factors
influencing vulnerability. Drought-prone areas need
to deepen their knowledge of drought climatology
(the likelihood of drought at various intensities and
durations) and develop a comprehensive, integrated
drought information system. This system should
encompass climate, soil, and water supply factors,
including precipitation, temperature, soil moisture,
snowpack, reservoir and lake levels, groundwater
levels, and streamflow.

All drought-prone countries should develop
national drought policies and preparedness plans
that emphasize risk management rather than the
traditional crisis management approach, which
focuses on reactive emergency responses. Drought is
broadly categorized as meteorological, hydrological,
agricultural, or socioeconomic (Boken et al., 2005;
Lloyd-Hughes and Saunders, 2002). In India,
agricultural droughts are further classified based on
the timing of rainfall deficiency during a crop season:
early, mid, and late-season droughts (Kumar et al.,
2009). Early-season droughts are associated with a
delayed monsoon onset, leading to no or delayed
crop sowing. Mid-season droughts occur due to
breaks in the southwest monsoon, coinciding with
the vegetative growth stage of crops. Late-season
droughts coincide with the reproductive stage of
crops, causing forced maturity. Understanding the
relationships between different types of droughts is
crucial for assessing their impacts.

Several drought indices have been developed
over the last century, with new ones emerging as
technological advances improve the quantification
of drought impacts. Each index has its advantages
and limitations (Lloyd-Hughes and Saunders, 2002;

Morid et al., 2006; Dhakar et al., 2013; Vaani and
Porchelvan, 2017). Typically, a drought index value
is a single number that helps in making decisions
about drought mitigation based on drought severity
(http://drought.unl.edu/Planning/Monitoring/
Comparison of DroughtIndices.aspx, accessed on
25/06/2020). Drought indices utilize various hydro-
meteorological data, including rainfall, streamflow,
reservoir storage, soil moisture, groundwater, and
water supply indicators (WMO, 1975).

Based on these physical datasets, drought
indicators are divided into three categories:
meteorological, agricultural, and hydrological.
Popular meteorological drought indicators include
the Standardized Precipitation Index (SPI),
Standardized Precipitation Evapotranspiration
Index (SPEI), and Reconnaissance Drought Index
(RDI). Vicente-Serrano et al. (2010) compared the
performance of SPI, SPEI, and PDSI for global
drought monitoring, finding SPI and SPEI to be
more effective than PDSI for hydrological and
agricultural drought monitoring.

In recent decades, several indices using remote
sensing data have been developed, such as the
Normalized Difference Vegetation Index (NDVI),
Vegetation Condition Index (VCI), Enhanced
Vegetation Index (EVI), and Temperature Condition
Index (TCI). These indices are widely used for
monitoring vegetation drought (Quiring and
Ganesh, 2010; Dutta et al., 2013; Kumar and
Purushothaman, 2016; Bento et al., 2018; Yulistya et
al., 2019). NDVI data, in particular, play a significant
role in monitoring vegetation drought (Zhou et al.,
2009; Sona et al., 2012; Dutta et al., 2013; Aswathi et
al., 2018; Venkadesh et al., 2019; Jimenez-Donaire et
al., 2020). These indices can be integrated with
meteorological indices to provide valuable
information when ground data is unavailable.
However, frequent cloud cover during monsoon
seasons can complicate the interpretation of
vegetation cover from remote sensing images.

Geography and Area of Extent

The state of Gujarat, India, is situated on the
west coast between latitudes 20°06′N and 24°42′N
and longitudes 68°10′E and 74°28′E, encompassing
an area of 196,000 km². Gujarat boasts the longest
coastline (1,600 km) among India’s mainland states.
Despite its proximity to the Arabian Sea, much of
Gujarat experiences an arid to semi-arid climate due
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to its closeness to the Great Indian Desert to the
north. The environment in Gujarat is shaped by the
interplay of topography, soil, vegetation, and
climate. The topography features vast plains
interspersed with occasional small hills.

Gujarat’s climate is marked by significant spatial
and temporal variations in monsoon rainfall. The
southwest monsoon, which occurs from late June to
the end of September, accounts for more than 90%
of the annual rainfall. Despite the state’s overall arid
conditions, these monsoon rains play a critical role
in supporting agriculture and replenishing water
resources. However, the monsoon’s arrival and
intensity can be highly variable, leading to challenges
in water management and agriculture.

The state also exhibits considerable variation in
seasonal temperatures, except in coastal regions. The
mean annual temperature ranges between 28°C and
33°C, while the mean summer temperature (April-
June) is around 40°C. During heatwave events, the
maximum temperature in many areas can soar to
48°C, posing significant health risks and affecting
agricultural productivity. The interplay of these
climatic factors with the state’s diverse topography
and soil types results in a complex and dynamic
environmental landscape. Location map of study
area Gujarat (India) given in Fig. 1.

Normalized Difference Vegetation Index (NDVI)

Numerous researchers have successfully utilized
the NDVI in studies related to vegetation phenology,
vegetation classification, and land cover mapping
on the continent (Tucker et al., 1985). NDVI is also
effective for drought classification, estimating crop
growth conditions, and predicting crop yields
(Kogan, 1987). The NDVI is based on the principle
that the internal structure of healthy leaves reflects
Near-Infrared (Ch2) radiation, while chlorophyll and
other pigments absorb a large proportion of red
visible (Ch1) radiation. In water-stressed, unhealthy
vegetation, this function is reversed. 

NDVI = (Ch2-Ch1) / (Ch2+Ch1)  (1)

The NDVI utilizes the near-infrared (Ch2) and
visible red (Ch1) bands of the electromagnetic
spectrum. NDVI values range from -1 to +1. Values
below 0.1 are typical of areas with rock, sand, and
snow cover, while values between 0.6 and 0.8 are
common in tropical and temperate rainforests. NDVI
is a popular index for the classification of agricultural
drought, estimating soil moisture, and evaluating
vegetation conditions. However, the utility of NDVI
can be limited by various sources of error, such as
atmospheric noise, satellite orbital drift, and sensor
degradations (Kogan, 1995).

Fig. 1. Location map of study area Gujarat (India)



98 Srinivas / J. Nat. Res. Cons. Manag. / 5(2), 95-110, 2024

Vegetation Condition Index (VCI)

The following VCI equation was applied to the
final NDVI database:

VCI = (NDVIi - NDVImin) / (NDVImax - NDVImin) *
100 (2)

Here, NDVImax and NDVImin represent the
maximum and minimum NDVI of each pixel
calculated for each month and j represents the index
of the current month. The VCI value is expressed as
a percentage ranging from 1 to 100. A value between
50% and 100% indicates that the vegetation is in
good condition, while a value between 35% and
50% suggests that the vegetation is experiencing
drought. Values below 35% indicate severe drought
conditions. This index normalizes NDVI and
separates the long-term ecological signal from the
short-term climate signal, making it a more effective
indicator for monitoring water stress conditions than
NDVI. Drought severity classification range of
Vegetation Condition Index (Table 1).

vegetation under normal circumstances. However,
its limitations include not accounting for the
standard deviation, which can lead to mis-
interpretation when vegetation condition variability
is very high in a given year. The values range from -
100% to +100% departure from normal.

Rainfall Anomaly

Rainfall anomaly has to be computed from
(1986-to 2015 years) for the growing season June-
October to indicate meteorological drought. Rainfall
anomaly has been computed as:

RFAi = [(RFi – RFµ)] / (RFµ)*100 (4)

Where I is the rainfall anomaly for an ith year; RFi is
seasonal rainfall for the ith year and RFµ is the mean
seasonal rainfall.

Meteorological drought, as defined by the Indian
Meteorological Department (IMD), occurs when
seasonal rainfall in an area is less than 75% of its
long-term average. It is further classified based on
the extent of rainfall deficiency: mild drought when
rainfall is 25% below normal, moderate drought
when rainfall is 50% below normal, and severe
drought when rainfall is 75% below normal. This
classification follows the criteria established by the
IMD.

Standardized Precipitation Index (SPI)

Recognizing that a precipitation deficit affects
reservoir storage, soil moisture, groundwater,
snowpack, and streamflow in varying ways led to
the development of the Standardized Precipitation
Index (SPI) by McKee et al. (1993). The SPI has
since gained widespread acceptance and is
recommended by the World Meteorological
Organization as the primary index for monitoring
meteorological droughts.

SPIij H≈ Xij–µij / σij (5)

where SPIij is the SPI of the ith month at the jth time-
scale, Xij is the precipitation total for the ith month at
the jth time-scale, µij, and σij are long-term mean and
standard deviation associated with an ith month at
the jth time-scale. Since precipitation data is often
not normally distributed, the SPI addresses this issue
by fitting the data to a suitable gamma distribution
and then transforming it into a normal or Gaussian
distribution. The SPI is subsequently calculated
according to the method outlined in Eq. (5).

Table 1. Drought severity classification range of Vegetation
Condition Index

VCI Range Dryness level

0-20 Extreme drought
20-40 Severe drought
40-60 Moderate drought
60-80 Light drought
80-100 Very light

NDVI Anomaly Index

The severity of drought (or, conversely, the
extent of wetness) can be defined by the deviation of
NDVI values from their long-term mean
(Bandyopadhyay and Saha, 2016). The following
formula is used for the calculation of the anomaly
index:

NAI = NDVIi -NDVImean, m (3)

Where NDVIi is the NDVI value for a month I and
NDVImean, m is the average of mean monthly NDVI
values of 30 years from 1986 to 2015 for (June to
October) month of a particular year. When the NDVI
Anomaly is negative, it indicates below-normal
vegetation condition/health, signifying a drought
situation. The severity of the drought is proportional
to the magnitude of this negative departure. In
general, NDVI deviation from the long-term mean
is more than just a drought indicator, as the long-
term NDVI value reflects the conditions of healthy
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Standardized Precipitation Evapotranspiration
Index (SPEI)

The Standardized Precipitation Evapo-
transpiration Index (SPEI) was proposed by Vicente-
Serrano et al. (2010) to merge the sensitivity of the
PDSI to changes in evaporation demand with the
multi-time scale property of the SPI. They
emphasized that SPEI is particularly suited for
detecting and monitoring the effects of global
warming on drought conditions. It represents a
simple climatic water balance, calculated as the
weekly or monthly difference between cumulative
precipitation and potential evapotranspiration. It is
mathematically expressed as follows:

Di = Pi - PETi (6)

The calculated ‘D’ values are aggregated at different
time scales as:

(7)

Where k (months) is the timescale of the aggregation
and n is the calculation month. SPEI is calculated
similarly to SPI. However, a three-parameter
distribution is needed to standardize D-series as D-
values can have negative values. Globally, the three-
parameter log-logistic distribution was found to be a
better fit for SPEI at all-time scales using the
Kolmogorov-Smirnov test (Vicente-Serrano et al.,
2010). The drought severity classification based on
SPEI values is similar to the SPI classification and it
can be defined at multiple scales.

RESULTS AND DISCUSSION

Evaluation of Relationship of Maximum NDVI
with Seasonal Rainfall

The relationship between maximum NDVI and
seasonal rainfall indicates a consistent increase in
NDVI as rainfall increases. Maximum NDVI values
are used because they are assumed to represent the
peak greenness during the period. According to
studies by Li et al. (2004), Kassa (1993), and
Senamaw et al. (2021), NDVI measures the
magnitude of greenness over time and quantitatively
reflects the land’s capacity to support photosynthesis
and primary production. From Fig. 2, it can be
observed that NDVI linearly increases from 0.1 to
0.5 as seasonal rainfall rises from 300mm to
1000mm. However, NDVI saturates once seasonal
rainfall exceeds the 1000mm threshold, showing no
significant increase even with additional rainfall.
While average NDVI and seasonal rainfall fairly
represent the growing season, Fig. 2 reveals that
NDVI achieves a higher value at its maximum but is
lower on average. The correlation is higher with
average NDVI than with maximum NDVI. This
increase in R² due to data averaging might be
accredited to a significant decrease in observations
rather than the removal of outliers. Therefore,
averaging NDVI values to account for inter-annual
variations might reduce the accuracy of NDVI
measurements, potentially distorting the true
condition of vegetation during the growing season.

Fig. 2. Relationship between mean seasonal rainfall and maximum NDVI
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Fig. 3. Average rainfall and Average NDVI (1986-2015)

Fig. 4. Temporal trends of NDVI and Rainfall (1986-2015)

The seasonal patterns of rainfall and NDVI are
illustrated in Fig. 3, which shows that the western
part of Gujarat receives low rainfall, averaging 300
mm for the entire season, resulting in low NDVI
values of around -0.3. Conversely, central and
southern Gujarat experience significantly higher
rainfall, exceeding 2500 mm, leading to higher NDVI
values (Chopra, 2006; Shukla et al., 2007; Murad
and Islam, 2011; Kundu and Dutta, 2011).

Rainfall is vital for plant growth, with seasonal
growth in many ecosystems, especially grasslands
and croplands, aligning closely with the rainy season.
During droughts, these ecosystems exhibit minimal

or no vegetation growth, while abundant rainfall
prompts a surge in greenery. The rainfall graph
displays total annual rainfall in millimeters, while
vegetation is represented by an index of greenness,
which is influenced by factors such as plant diversity,
leafiness, and overall health. Areas with dense
foliage and vigorous growth appear dark green,
indicating a high greenness index (Davenport and
Nicholson, 1993; Islam and Mamun, 2015). Fig. 4
depicts the temporal patterns of NDVI and rainfall
from 1986 to 2015. The graph highlights that years
with low rainfall correspond to low NDVI values,
with notable dips in 1986 and 1987 reflecting drought
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conditions and reduced NDVI (Rimkus et al., 2017;
Pei et al., 2019).

Spatial Pattern of NDVI and Rainfall Anomaly

Fig. 5 illustrates the spatial patterns of NDVI
and rainfall anomalies during the 1987 drought and
the 1997 wet year. In 1987, Gujarat experienced
negative NDVI and rainfall anomalies across the
entire state. In contrast, 1997, a particularly wet
year, showed positive anomalies for both rainfall
and NDVI (Chopra, 2006; Hasan Murad, 2010;
Nanzad et al., 2019). This demonstrates the
important influence of precipitation on vegetation
conditions: abundant rainfall leads to positive
vegetation responses, resulting in higher NDVI
values, whereas limited rainfall results in lower
NDVI values.

Spatial Pattern of Drought Years of SPI and VCI

Fig. 6 presents SPI and VCI-based maps of
meteorological and agricultural drought intensity
from 1986 to 2015. Bandyopadhyay and Saha (2016)
noted that Gujarat faced some of its worst droughts
in the late 20th century, particularly in 1986, 1987,
1990, 1991, 1993, 1995, 1998, 1999, 2000, 2001,
2002, and 2009. This study’s drought analysis,
starting from 1986, does not cover the severity of
droughts in 1987, 1999, and 2001. Nonetheless, Fig.
6 highlights severe drought conditions in 1986 and

shows similar intensity in 1990, 1998, 2000, 2001,
2002, and 2009, with many districts in extreme to
severe drought categories.

The severity of drought during the monsoon
season varies monthly, as shown in the drought
maps for major drought years. This variability
reflects changes in the monsoon onset and uneven
vegetation conditions across years. For example, in
1997, Gujarat generally experienced normal
conditions, but drought conditions worsened to
moderate to severe levels by July, August, and
September. This pattern suggests that an early
monsoon onset can result in crop failures due to
inaccurate predictions.

Spatial Pattern of Drought Years of RAI and NAI

Fig. 7 represent spatial Pattern of Drought Years
of RAI and NAI. The Rainfall Anomaly Index (RAI)
is effective in detecting rainfall deviations. Research
shows a strong link between vegetation growth and
rainfall. Analysis of the RAI from 1986 to 2015
identified severe rainfall deficits and drought stress
in 1986, 1987, 1990, 1991, 1993, 1995, 1998, 1999,
2000, 2001, 2002, and 2009, with RAI values falling
below -3. Conversely, extreme wet conditions were
noted in 1988, 1993, 1997, 2003, 2011, and 2013,
with RAI values above 3. These findings align with
SPI results on severe drought and normal conditions
in 2003 and 2013, respectively. Previous studies

Fig. 5. Spatial pattern of NDVI anomaly and rainfall anomaly (a) & (c) 1987 and (b) & (d) 1997
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Fig. 6. Important drought years from 1986 to 2015 are represented by two indices
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Fig. 7. Important drought years from 1986 to 2015 are represented by two indices
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support severe droughts during these years in Gujarat
(Patel and Yadav, 2015; Bandyopadhyay and Saha,
2016; Thomas et al., 2016; Nanzad et al., 2019).

Similarly, the Normalized Anomaly Index
(NAI) developed by Anyamba and Tucker (2012)
uses +100 to indicate normal drought conditions
and -100 for severe drought (Nightingale and Phinn,
2003; Dubey et al., 2012; Bandyopadhyay and Saha,
2016; Vaani and Porchelvan, 2017; Nanzad et al.,
2019). Lower NAI values in 1986, 1987, 1990, 1991,
1993, 1995, 1998, 1999, 2000, 2001, 2002, and 2009
reflected severe rainfall deficits and agricultural
drought stress, while positive NAI values above +100
indicated extreme wet conditions in 1988, 1993,
1997, 2003, 2011, and 2013. NAI results were
consistent with NDVI findings on severe drought
and normal conditions in 2003 and 2013.

Analyze the SPI and SPEI Indices

To analyze SPI and SPEI, monthly
meteorological data from 33 districts in Gujarat
spanning 1986 to 2015 were used. The study
employed time series analysis to assess drought
characteristics, identifying droughts when SPI or
SPEI values fell below 0 (Table 2). Key drought
characteristics include frequency, duration, and
intensity. Frequency is determined by dividing the
number of drought months by the total number of
months in the period, while duration is the average
length of all drought events.

Over the past 30 years, drought frequency and
intensity have increased, with clearer trends over
longer timescales (Fig. 8). Short-term climate
changes caused SPI and SPEI to fluctuate around 0,
reflecting variations in water balance. Longer

timescales revealed more pronounced variations,
with reduced volatility and clearer interannual and
interdecadal trends, indicating long-term drought
characteristics. While SPI and SPEI trends were
similar, differences in fluctuation and continuity
highlighted varying drought frequencies and
intensities. Recent years have shown a widening gap
between SPI and SPEI.

Fig. 8 shows differences in drought
characteristics between SPI and SPEI over the 30-
year period, with noticeable changes in dryness and
wetness after 1987. Drought conditions were less
severe in 1990, 1991, 1993, 1995, 1998, 1999, 2000,
2001, 2002, and 2009 (Fig. 8). Although SPI and
SPEI generally reflected similar drought trends, there
were minor differences, particularly at 1-, 3-, and 6-
month scales. Before 1999, SPI indicated more
frequent droughts from June to October, whereas
SPEI showed fewer. After 1996, both indices
reported similar dryness and wetness monthly,
though SPI often indicated more severe drought
conditions. SPEI occasionally showed higher
drought levels than SPI, possibly due to rising
temperatures. Annual variations were consistent
across 1-, 3-, 6-, and 12-month timescales for both
indices.

Table 2. Drought Severity Classification

Class Values of SPI and SPEI

Extremely Wet (EW) ≥2
Severe Wet (SW) 1.5 to 1.99
Moderately Wet (MW) 1 to 1.49
Normal (N) 0.99 to 0.99
Moderately Dry (MD) -1 to -1.49
Severely Dry (SD) -1.5 to -1.99
Extremely Dry (ED) ≤2
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Fig. 8. Monthly variations in the SPI and SPEI at 1-, 3-, 6-, and 12-month timescales of Gujarat during 1986-2015
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